Simulation of Crop Evaportranspiration Based on BP Neural Network Model and Grey Relational Analysis

نویسندگان

  • Liang Ma
  • Feng Liu
  • Liangliang Chen
  • Ming Hong
چکیده

Crop evaportranspiration was studied with measured data of Kongque river irrigation district in Xinjiang Province based on application of BP neural networks, a sensitivity analysis about crop evaportranspiration was conducted according to each input factor by using default factor method, and the grey relational analysis method was applied to certify the results.The results showed that the artificial neural networks model could express quantitatively the response relationship between crop evaportranspiration and various factors with sufficient high accuracy. Soil moisture and solar radiation were the main sensitive factors for soil water-salt dynamic in this irrigation district, the interaction amongst various factors formed coupling relationship under the complicated condition. The grey relational analysis method could further verify the sensitivity degree amongst various factors. The combination of the above methods provides feasible method for analyzing the rules of crop water comsumption during crop growing season, and it is complement and perfection for the traditional research methods of crop evaportranspiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of the injection molding process of Derlin 500 composite using ANOVA and grey relational analysis

Warpage and shrinkage control are important factors in proving the quality of thin-wall parts in injection modeling process. In the present paper, grey relational analysis was used in order to optimize these two parameters in manufacturing plastic bush of articulated garden tractor. The material used in the plastic bush is Derlin 500. The input parameters in the process were selected according ...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Dissimilar friction stir lap welding of Al-Mg to CuZn34: Application of grey relational analysis for optimizing process parameters

This study focused on the optimization of Al—Mg to CuZn34 friction stir lap welding (FSLW) process for optimal combination of rotational and traverse speeds in order to yield favorable fracture load using Grey relational analysis (GRA). First, the degree of freedom was calculated for the system. Then, the experiments based on the target values and number of considered levels, corresponding orth...

متن کامل

Estimation of groundwater level using a hybrid genetic algorithm-neural network

In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...

متن کامل

Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path

Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012